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Abstract

The use of testosterone replacement therapy (TRT) for hypogonadism continues to rise, particularly in
younger men who may wish to remain fertile. Concurrently, awareness of a more pervasive use of
anabolic-androgenic steroids (AAS) within the general population has been appreciated. Both TRT and
AAS can suppress the hypothalamic-pituitary-gonadal (HPG) axis resulting in diminution of
spermatogenesis. Therefore, it is important that clinicians recognize previous TRT or AAS use in patients
presenting for infertility treatment. Cessation of TRT or AAS use may result in spontaneous recovery of
normal spermatogenesis in a reasonable number of patients if allowed sufficient time for recovery.
However, some patients may not recover normal spermatogenesis or tolerate waiting for spontaneous
recovery. In such cases, clinicians must be aware of the pathophysiologic derangements of the HPG axis
related to TRT or AAS use and the pharmacologic agents available to reverse them. The available agents
include injectable gonadotropins, selective estrogen receptor modulators, and aromatase inhibitors, but
their off-label use is poorly described in the literature, potentially creating a knowledge gap for the
clinician. Reviewing their use clinically for the treatment of hypogonadotropic hypogonadism and other
HPG axis abnormalities can familiarize the clinician with the manner in which they can be used to recover
spermatogenesis after TRT or AAS use.
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INTRODUCTION

In recent years, mass marketing has led to a greater public awareness of the age-related decline in serum
testosterone levels and the association of hypogonadism with many already common medical
comorbidities.1,2 This in part has fueled the growth of testosterone replacement therapy (TRT) for
hypogonadism, which experienced a 12-fold increase in sales worldwide from 2000 to 2011.3 The same
trend occurred in the United States where the greatest increase was observed in younger men aged 40–49
years by 4-fold, resulting in an age group-specific prevalence of 2.3% in 2011.4 This is not surprising since
approximately 7% of men less than 40 years and 38% of men older than 45 years demonstrate biochemical
hypogonadism when defined as <300 ng dl .1,5 As such, younger men are seeking treatment for
hypogonadism with as many as 12.4% of all testosterone prescriptions occurring in men <39 years of age.6

Similar to TRT, there has also been an increase in the availability and use of anabolic-androgenic steroids
(AAS). It is estimated that up to 3 million people use AAS in the Unites States alone, including up to 3%
of high school age adolescents, 14% of collegiate athletes, and 30% of community weight trainers;
however, many of these estimates are based upon older data.7,8 A more recent review revealed that AAS
use is a common cause of profound hypogonadism with up to one of five men seeking treatment for
hypogonadism reporting prior AAS use.9 Interestingly, much of the increase in amateur athletic use has
been attributed to cosmetic instead of athletic improvements.10 These numbers indicate a concerning shift
in use to beyond the realm of professional athletics. In addition, many “dietary supplements” used for
athletic or cosmetic enhancement also discretely contain AAS, with contamination rates as high as 15%.11
Unfortunately, up to 50% of previous AAS users choose not to disclose their previous AAS use with
physicians, potentially masking a clinician's overall impression of the burden of AAS abuse.12

Both TRT and AAS use can lead to suppression of the hypothalamic-pituitary-gonadal (HPG) axis,
resulting in a diminution of spermatogenesis and potential infertility. Spontaneous recovery of
spermatogenesis after cessation of TRT or AAS is possible but may take several months to several years,
and in some cases may be permanent.13,14,15,16 Taken together, the rising use of TRT and AAS in young-
to middle-aged men, in conjunction with a societal shift toward greater paternal age,17 is creating an
environment where clinicians are increasingly likely to encounter men seeking treatment for infertility
related to prior TRT and/or AAS use or treatment for hypogonadism with interest in preserving their
fertility. Meanwhile, men present to infertility specialists for vasectomy reversal (VR) at an average age of
41 (n = 1300), some of whom may also suffer from hypogonadism and report current or previous TRT
use.18 Therefore, clinicians need to be keenly aware of the effects of TRT and AAS on spermatogenesis
and what treatment options are available to reverse these effects to restore spermatogenesis.

NORMAL SPERMATOGENESIS

Normal spermatogenesis is dependent on appropriate signaling from the HPG axis. This signaling initially
consists of a pulsatile release of gonadotropin-releasing hormone (GnRH) from the hypothalamus via the
portal system to the pituitary gland where stimulation results in gonadotropin release. Luteinizing hormone
(LH) from the pituitary stimulates Leydig cells in the testis to produce testosterone and leads to
intratesticular production of insulin-like growth factor 1 (IGF-1), which plays an integral role in Leydig
cell LH receptor upregulation, steroidogenesis, and maturation.19,20 Follicle-stimulating hormone (FSH)
from the pituitary stimulates Sertoli cells in the testis, which supports spermatogonial differentiation and
maturation. Both FSH and maintenance of high intratesticular testosterone (ITT) levels (50–100 fold higher
than serum) in response to LH are critical for normal spermatogenesis to occur.21,22,23,24 Historically,
Sertoli cell-produced androgen-binding protein was thought to be responsible for such high ITT levels, but
recent data suggest that other factors are also involved.25 Interestingly, animal studies have demonstrated
that the absence of FSH signaling results in impaired spermatogenesis whereas loss of sufficiently high ITT
levels results in the absence of spermatogenesis.26

Regulation of the HPG axis occurs via feedback inhibition. Endogenous testosterone directly inhibits
GnRH and LH release at the hypothalamus and pituitary levels, respectively, leading to downstream
attenuation of testosterone production. Testosterone also indirectly regulates gonadotropin secretion via
estrogen, derived from testosterone conversion peripherally by aromatase enzyme. Estrogen exhibits a
greater effect on LH secretion than FSH although additional FSH feedback inhibition occurs with inhibin B
secreted from Sertoli cells. Inhibin B levels have been considered a surrogate for spermatogenesis; for
example, men with spermatogenetic defects express lower inhibin B levels.27 Additional autocrine,
paracrine, and endocrine factors within the hypothalamus, pituitary, and testis can function to further
modulate the HPG axis in complex ways including endocannabinoids, GnRH, kisspeptin, norepinephrine,
growth hormone, interleukins, and TGF-β.28 Therefore, the HPG axis represents a dynamic, but tightly
regulated, system at multiple levels resulting in spermatogenesis, among other things.

INFLUENCE OF EXOGENOUS ANDROGENS ON SPERMATOGENESIS

The use of exogenous androgens can influence the HPG axis by similar mechanisms as endogenous
testosterone by exerting negative feedback in a dose- and duration-dependent fashion, resulting in
reductions in ITT, blunting of FSH production, and ultimately decrease or complete cessation of
spermatogenesis.29 Data specifically describing the natural history of unassisted spermatogenesis recovery
after long-term TRT are lacking, but such information can be extrapolated from the male contraceptive
literature.16 Multiple and international trials using various testosterone preparations have been performed
and demonstrate a median time to spermatogenesis suppression to <1 × 10  ml  sperm within 3.5 months.
Alternatively, the same data demonstrate a median time to recovery of 20 × 10  ml  sperm ranging from 3
to 6 months, with probability estimates suggesting recovery in 67%, 90%, 96%, and 100% of men at 6, 12,
16, and 24 months, respectively, after discontinuation of testosterone exposure.13 These data also suggest
that a longer exposure to exogenous testosterone, Asian ethnicity, and older age may result in a prolonged
recovery time after treatment cessation.13,30,31,32 Importantly, one must consider that these data are
carefully collected in men within the tightly controlled, clinical trial environment, and may not be
generalizable. Certainly, men with a prior, multiple year history of TRT or AAS use may not expect the
same rate of recovery.

AAS are synthetic derivatives of testosterone with chemical modifications intended to mimic the anabolic
more than the androgenic effects of testosterone. Many abusers use “stacking” regimens with multiple,
high-dose AAS agents to maximize muscle mass and weight gain, which are often “cycled” to minimize
side effects. Nevertheless, AAS can still bind the androgen receptor within target cells and exert the same
negative feedback effects as endogenous testosterone, often resulting in anabolic steroid-induced
hypogonadism (ASIH) and associated reductions in serum gonadotropin levels and ITT.9,15,21,33 With
abnormally low ITT and FSH, these patients often exhibit azoospermia or oligospermia with reduced
motility and/or morphology on semen analysis.15

Such effects on the HPG axis are potentially reversible with cessation of AAS use, but the time to recovery
is highly variable and influenced by the dose and extent of stacking multiple AAS agents, duration of AAS
use, and patient age.8,34 Data specifically looking at recovery of spermatogenesis after cessation of AAS
are scant, but case reports suggest that recovery is feasible within 4–12 months although some patients may
require up to 24–30 months to return to sperm concentrations of >20 × 10  ml .14,15,35,36,37 It cannot
be understated that given the inherent variability in patient characteristics and AAS agent(s) used, a
uniform recovery of the HPG axis cannot be expected in all patients.

PHARMACOLOGIC AGENTS TO RESTORE OR MAINTAIN
SPERMATOGENESIS

Human chorionic gonadotropin (hCG) is a naturally occurring protein
produced by the human placenta with a serum half-life of approximately 36 h. Structurally, hCG shares an
identical α-subunit with LH and FSH. However, hCG has a unique β-subunit that is virtually identical to
the LH β-subunit except that it has an additional 24 amino acid tail at the amino terminus of the protein,
which is highly glycosylated and leads to both a longer circulating half-life of hCG (~36 h) versus LH (~30
min) and increased receptor activity. The increased LH receptor activity, along with its longer half-life,
makes it a clinically useful LH analog. Initially extracted from the urine of pregnant females, naturally
occurring hCG has demonstrated efficacy at restoring spermatogenesis.38 Newer, recombinant hCG has
emerged and is considered equivalent to urinary sources pharmacologically although further study is
warranted to confirm its equivalency to urinary forms in restoring spermatogenesis.39 Similarly, FSH has
traditionally been derived from the urine of postmenopausal women in the form of human menopausal
gonadotropin (HMG). A large proportion of naturally occurring HMG consists of copurified urinary
proteins inactive at the FSH receptor, with a lesser proportion containing a blend of FSH, LH, and hCG.40
Therefore, similar to hCG, refinements have led to production of highly purified urinary HMG, and more
recently recombinant FSH (rFSH), to achieve higher specificity for the FSH receptor. To date, direct
comparisons between the two have not occurred for use at inducing spermatogenesis in men, but data from
use in women suggest that rFSH is equivalent to urinary preparations and can avoid the theoretical risk of
Creutzfeld–Jakob disease;38,40 therefore, rFSH is the preferred method of pharmacologic delivery of FSH
in men.

Clinically, hCG has proven successful at inducing and/or maintaining spermatogenesis alone or in
combination with FSH in patients with hypogonadotropic hypogonadism (HH). HH is an uncommon but
treatable cause of male factor infertility classically considered secondary to pathology of the hypothalamus
or pituitary gland as seen with Kallman's syndrome, Prader–Willi syndrome, panhypopituitarism from
prolactinomas, tumors, infection or radiation, or idiopathic causes.21 Recently, recognition that the
increasingly common use of exogenous TRT and/or AAS can also induce HH, also known as ASIH, with
associated diminished spermatogenesis. Therefore, men with azoospermia or severe spermatogenic defects
due to classic HH serves as a useful context in whom to appreciate the effect of gonadotropins upon
spermatogenesis clinically. However, due to the uncommon prevalence of HH, high-quality data are
lacking and most are limited to case reports and retrospective series.41

Historically, treatment approaches for HH have focused upon physiologic, pulsatile GnRH therapy to
induce secondary sex characteristics and spermatogenesis with reported pregnancy rates as high as
80%.42,43 However, widespread use of pulsatile GnRH is inherently limited due to the need for an
external pump for periodic hormone release, cost, and requirement of a functionally intact pituitary gland
to appropriately respond to hypothalamic signals.44 Alternatively, treatment with injectable gonadotropin
regimens has demonstrated equivalent clinical efficacy compared with GnRH for triggering
spermatogenesis based upon a recent meta-analysis.44 Therefore, gonadotropins offer patients an
efficacious and more convenient treatment approach.45 FSH given alone or in combination with
testosterone has proven unsuccessful at inducing spermatogenesis or maintaining spermatogenesis in those
previously induced with hCG/FSH (hCG 1500 IU and HMG 150 IU both subcutaneous and 3 times per
week), confirming the need for maintenance of elevated ITT.46 However, long-term use of hCG alone can
induce spermatogenesis in up to 70% of patients, with a greater effect seen in men with initial testis length
>4 cm, but further improvement is appreciated with the addition of FSH (HMG) suggesting a timelier
recovery with both gonadotropins.47 The success of inducing spermatogenesis with a combination of hCG
and FSH is supported by several studies (Table 1).41,42,45,48,49,50,51,52,53 In these data, most begin by
stimulating endogenous testosterone production with trial of hCG alone with doses ranging from 1500 to
5000 IU 2–3 times per week titrated according to serum testosterone levels. Most experts treat with hCG
alone for 3–6 months after which a certain number of cases will result in spermatogenesis induction. In
those without adequate spermatogenesis induction, treatment proceeds with the addition of FSH with doses
ranging from 75 to 400 IU 2–3 times per week titrated according to semen analysis results. Success defined
as induction of spermatogenesis with >1–1.5 × 10  ml  sperm was reported to occur in 44%–100% of
patients treated for 6–144 months.52 Pregnancy rates, when reported, were observed in 40%–75% of
patients usually at sperm concentration levels below “normal.”42,51,54 Factors predicting success include
larger baseline testis volume, previous natural gonadotropin exposure (normal puberty), and repeated
treatment cycles whereas previous exogenous testosterone exposure and cryptorchidism portend a slower
response although these findings are variable.42,55 It is important to consider these data are in men with
HH due to classic causes and not patients with previous TRT/AAS use in whom better outcomes can
theoretically be expected given the likelihood of normal pubertal development and HPG axis function at
some point before TRT/AAS exposure.

Table 1

Gonadotropins for recovery of spermatogenesis in classic hypogonadotropic hypogonadism

Data specifically evaluating induction or maintenance of spermatogenesis in men with HH and
azoospermia specifically due to previous TRT and/or AAS use is scarce (Table 2). In a study of normal
men treated with TRT and randomized to concurrent administration of placebo or low-dose hCG (125, 150
or 500 IU) every other day, ITT levels were maintained in all hCG groups with levels closest to baseline
normal in the 250 and 500 IU dose groups, thereby suggesting preservation of spermatogenesis.56 These
data are supported by the finding from Depenbusch and colleagues that preservation of spermatogenesis is
possible with hCG alone (500–2500 IU twice weekly based upon serum testosterone levels) in men with
HH and azoospermia in whom spermatogenesis was previously initiated with hCG/FSH.57 However, in
this study, spermatogenesis was only maintained “qualitatively,” in that mean sperm concentrations with
hCG alone were 43% of levels previously achieved with spermatogenesis induction using a combination of
hCG and FSH, suggesting both are needed for “quantitatively” normal spermatogenesis. Alternatively, a
series of hypogonadal men wishing to preserve fertility while initiating TRT with different agents
(transdermal gels and injections) demonstrated that low-dose hCG (500 IU every other day) preserves all
aspects of analyzed semen parameters despite improvement in serum testosterone levels, and with no
differences observed between different types of TRT agent used.58 A more recent multi-institutional series
of men previously treated with TRT and established to be azoospermic or severely oligospermic (<1 × 10
ml ) were given hCG 3000 IU every other day supplemented with either FSH, clomiphene citrate (CC),
tamoxifen, or anastrozole. This series demonstrated a mean recovery of spermatogenesis to a density of 22
× 10  ml  in 4 months.59 Similarly, a series of hypogonadal men on TRT seeking VR underwent
“testicular salvage” with CC and hCG (3000 IU every other day) before VR, resulting in normalization of
HPG parameters and successful VR in 83%.60 Finally, even less data are available to support gonadotropin
use for restoration of spermatogenesis in azoospermic men with ASIH after AAS use. A few case reports
indicate that hCG alone at variable doses (2000 IU 3 times per week to 10 000 IU once weekly)15,36,61 or
both hCG (10 000 IU weekly) and FSH (75 IU daily) in combination62 can restore spermatogenesis and in
some cases lead to conception. Collectively, these data demonstrate that restoration and maintenance of
spermatogenesis using gonadotropins is a successful strategy in men with prior TRT and/or AAS use, with
results similar to those observed with gonadotropin use in men with classic HH.

Table 2

Commonly used pharmacologic agents for maintenance or restoration of spermatogenesis after
anabolic-androgenic steroid or exogenous testosterone use

SERMs are a group of medications that function to
disrupt binding of estrogen at estrogen receptors in the hypothalamus through competitive antagonism. In
men, normal binding of estrogen at these receptors functions as an indirect negative feedback mechanism
of endogenous testosterone production to downregulate GnRH and subsequently pituitary gonadotropin
production. Therefore, SERMs function to block estrogen feedback thereby increasing GnRH and
gonadotropin production and ultimately increasing ITT levels in men without evidence of primary
hypogonadism.16,63,64 Clinically, tamoxifen and CC are two of the most commonly used SERMs, with
the former popularized by use in breast cancer treatment protocols and the latter popularized by its initial
development for triggering ovulation in women. CC exists as a racemic mixture of shorter acting
enclomiphene (purely anti-estrogenic effects) and longer acting zuclomiphene (both estrogen agonist and
antagonist effects) and exhibits a serum half-life of approximately 5 days.65

CC use in men was first reported in 1966 for treatment of subfertile males to improve pregnancy rates
based upon the theoretical benefit from its mechanism of action.66 Since then, it has been used off-label to
treat various subpopulations of infertile men with reported dosing schedules ranging from 25 to 50 mg
administered daily, every other day or cyclically with intermittent “off periods,” all of which may be
titrated based upon serum testosterone levels.67,68,69 Several studies looking at CC use in men with
secondary hypogonadism demonstrate clear improvement in serum testosterone levels, hypogonadal
symptoms, and testosterone: estrogen ratios indicative of CC's positive therapeutic effects on the HPG
axis.69,70,71 Similarly, the use of CC in men with idiopathic oligospermia or azoospermia with or without
hypogonadism has demonstrated favorable changes in hormone profiles and semen analyses, but data
evaluating pregnancy rates have yielded conflicting results.72,73,74 Nonetheless, CC continues to be used
clinically for the treatment of idiopathic male infertility and for the treatment of hypogonadal symptoms in
men wishing to preserve spermatogenesis in the absence of randomized controlled data. Overall, CC is
well tolerated and considered safe in men who tend to experience much fewer side effects than seen with
CC use in women.75,76 However, isolated case reports have demonstrated the possibility of developing
azoospermia with CC use in oligospermic men that is reversible with CC cessation.77 For this reason, it is
necessary to inform patients of its potentially unpredictable results, and follow-up serum laboratory studies
and semen analyses are important during treatment with CC.

Literature assessing CC use to restore spermatogenesis in oligospermic and azoospermic men with HH
after TRT and/or AAS use is very limited (Table 2). Case reports of CC use at higher doses (100 mg daily)
in young men with ASIH resulted in normalization of the HPG axis within 2–3 months, but
spermatogenesis was not evaluated.78,79 A small and retrospective case series looking at two men with
idiopathic, acquired HH with oligospermia and azoospermia, and one man with ASIH and azoospermia
who were each given CC 50 mg 3 times per week found 100% recovery of serum gonadotropins,
testosterone, and spermatogenesis within 3 months and a 66% pregnancy rate.80 More recently, a larger
retrospective series of 63 men given a combination of hCG 3000 IU 3 times per week and CC or tamoxifen
demonstrated recovery of spermatogenesis to >1 × 10  ml  sperm in 98% of men in 4–5 months, with a
mean initial sperm concentration of 22.6 × 10  ml .59 Similarly, a testicular salvage regimen of CC 25 mg
daily or combination with hCG 3000 IU every other day for six men with a history of TRT presenting for
VR resulted in normalization of the HPG axis and successful VR in 83% of patients.60

CC consists of a racemic mixture of zuclomiphene and enclomiphene with the latter exhibiting purely anti-
estrogenic effects with a relatively shorter half-life (10.5 h) than CC.81 Therefore, more promising than
CC are the recently reported results using enclomiphene citrate (EC) in men. Several positive clinical trials
have been performed, but official FDA approval is still pending. A phase IIB clinical trial followed 12 men
previously treated with TRT for >6 months and documented HH with oligospermia or azoospermia were
randomized to EC 25 mg daily versus topical testosterone gel for 6 months. The study demonstrated
equivalent responses in serum testosterone levels in both arms, and statistically significant improvements
in semen parameters were appreciated in the EC group (P = 0.004).82 Similarly, another phase II trial
looking at EC use in men with secondary hypogonadism demonstrated increases in serum testosterone and
gonadotropin levels within 2 weeks of treatment.83 Finally, the most recent phase IIB trial studied 73
hypogonadal men with normal spermatogenesis who were randomized to EC 12.5 mg or 25 mg daily,
topical TRT, or placebo. Equivalent increases in serum testosterone, estradiol, and LH levels among TRT
and EC groups were demonstrated, but an increase in oligospermia and azoospermia was observed in the
TRT group whereas spermatogenesis was preserved in the EC and placebo groups.84 Therefore, EC
represents an exciting new treatment on the horizon for restoration and preservation of spermatogenesis in
hypogonadal men, which will hopefully obtain future FDA approval pending results from upcoming phase
III studies.

AIs are a class of medications FDA approved for the treatment of early- and
late-stage breast cancer and historically include nonselective steroidal, and highly selective nonsteroidal
agents, including anastrozole and letrozole. AIs function by inhibiting the aromatase enzyme, which is a
cytochrome P450 converter of testosterone-to-estrogen within the testes, liver, brain, and adipose tissues.16
Estrogen is an indirect mediator of testosterone feedback inhibition of the HPG axis. Therefore, aromatase
inhibition in men can result in decreased estrogen levels and ultimately increased gonadotropin production.
Their use clinically in men is off-label and has focused upon improving male infertility and symptoms of
hypogonadism, particularly in obese men or in those with a serum testosterone-to-estrogen (T/E) ratios <10
where improvements of approximately 77% have been observed.64 In addition, AIs can be prescribed for
use with exogenous testosterone or hCG to mitigate side effects of hyperestrogenemia such as
gynecomastia.

Studies evaluating the use of older AI agents in oligospermic men have suggested improvement in T/E
ratios and spermatogenesis but randomized controlled data using testolactone failed to support these
findings.85 However, recent data by Raman and Schlegel compared testolactone (500–1000 mg twice
daily) to a more selective AI, anastrozole (1 mg daily), in subfertile men. Patients had abnormal T/E ratios
along with idiopathic oligospermia or azoospermia, and the study demonstrated a statistically significant
improvement in T/E ratios and spermatogenic parameters with anastrozole in those with oligospermia, but
not those with azoospermia.86 Similar success adding anastrozole (1 mg daily) to existing treatment in
men with idiopathic oligospermia and abnormally low T/E ratios unresponsive to 3 months of treatment
with tamoxifen alone demonstrates improvement in sperm concentration and motility.87 The previous
suggestion of AI failure at improving semen parameters in men with nonobstructive azoospermia by
Raman and Schlegel has been challenged by recent data showing improved success rates with
microsurgical testicular sperm extraction in men with nonmosaic Klinefelter's syndrome and normalized
serum testosterone levels after treatment with anastrozole preoperatively.88 The use of letrozole (2.5 mg
daily), a newer and more selective AI, has demonstrated improvements in T/E ratio and spermatogenic
parameters similar to anastrozole with up to 20% spontaneous pregnancy rate for oligospermic men and
24% return of sperm to the ejaculate of previously azoospermic men.89

The use of AIs in infertile men with previous TRT and/or AAS use has not been reported in prospective
trials. The aforementioned retrospective series from Wenker et al. evaluating hCG used concurrently with
SERMs, AIs, and FSH, in men with previous TRT use and severe oligospermia or azoospermia
demonstrated an overall 98% success rate at recovering spermatogenesis and 38% spontaneous pregnancy
rate, with no differences between the type of supplemental therapy given with hCG or type of TRT used (
Table 2).59 More recently, a study of 26 hypogonadal, infertile, nonazoospermic men randomized to CC
25 mg daily or anastrozole 1 mg daily for 6 weeks was performed and demonstrated improvements in both
overall testosterone levels and T/E ratios, but CC had a greater impact on testosterone levels and
anastrozole had a greater impact on T/E ratio.90 Therefore, in hypogonadal men with T/E ratios <10, CC
and AIs may be used concurrently to achieve the best result; however, this theoretically beneficial
pharmacologic combination has not been reported in prospective studies, but anecdotally may prove useful.

Overall, the use of AIs is generally well tolerated in women, but elevated liver enzymes have been reported
in up to 17% of the patients suggesting caution in those with a history of hepatic dysfunction. A series
evaluating anastrozole for treatment of secondary hypogonadism in 69 older men followed for 1 year
confirmed a generally low rate of adverse events although one instance each of new diagnosis hepatitis,
pulmonary embolism, and embolic stroke was reported.91 A similar observation of pulmonary embolism
incidence was confirmed in a more recent series after only 12 weeks of treatment.90 In addition, some data
have suggested potentially worse skeletal bone health with anastrozole use in older men, presumably based
upon lower estrogen levels.92 Taken collectively, AIs may result in a positive influence on the HPG axis
after TRT or AAS use, but in the absence of more robust clinical data and an uncertain side effect profile
with long-term use, AI use may be limited to an adjunctive role only in those who have abnormally low
T/E ratios.

CLINICAL SCENARIOS

Men with infertility related to previous TRT and/or AAS use can present clinically in a number of
scenarios that can be challenging to navigate as a clinician. In this review, we have provided the
pathophysiology of TRT and AAS effects on normal spermatogenesis and the pharmacologic tools
available to potentially reverse these effects. Certain clinical scenarios are commonly encountered, and a
brief discussion of these authors’ recommendations for treatment in each scenario follows.

A patient who presents for
treatment of male factor infertility, indicated by oligospermia or nonobstructive azoospermia, who either
reports a recent history or current use of TRT and/or AAS is a common scenario faced by a male fertility
specialist. Several options could be discussed depending on the severity of his hypogonadal symptoms,
timing in which he and his partner wish to achieve pregnancy, and assuming there is no clinical evidence of
primary hypogonadism.

If the patient and his partner are willing to wait and his hypogonadal symptoms are manageable without
TRT or AAS, the patient could simply discontinue the use of TRT or AAS to allow spontaneous recovery.
Data from the male contraception literature indicate a reasonable probability of recovery in 67%, 90%,
96%, and 100% of men at 6, 12, 16, and 24 months, respectively, with a median time to recovery of 20 ×
10  ml  sperm in 3–6 months.13,30,31 Yet, many men will not tolerate discontinuation either due to
severe hypogonadal symptoms, uncertainty of recovery, and/or timing issues, and these men may require
some form of alternate androgen supplementation. Therefore, one could administer gonadotropin analogs
similar to those implemented in patients with HH. Assuming there is no major component of primary
hypogonadism, this option is safe, would treat hypogonadal symptoms, and would hasten the time to
recovery. It is reasonable to start with hCG 3000 IU subcutaneous injection 3 times weekly for 3 months
with additional titration pending interim serum testosterone levels although the optimal hCG dose has not
been clearly established. If at 3 months seminal parameters have not improved, one could add FSH. A
typical starting dose is rFSH 75 IU subcutaneous injection 3 times weekly.

During gonadotropin therapy, adjunctive treatments with AIs or SERMs are typically implemented. Such
an approach has demonstrated excellent results on average within 4–5 months.59 CC 25 mg daily or 50 mg
every other day, titrated up to 50 mg daily, may demonstrate improvement in seminal parameters in as little
as 3 months for men with HH. CC is cost effective and has been more effective as a combined therapy in
this setting, with less extensive data to support it as a monotherapy.80 If the patient exhibits a low T/E
ratio, an AI could be prescribed, with anastrozole 1 mg oral twice weekly is a reasonable starting dose that
may be titrated up or down according to the response.

A second scenario is a
patient who wishes to preserve existing spermatogenesis before beginning TRT or AAS use. Maintenance
of normal ITT levels is critically necessary to maintain spermatogenesis. hCG has proven to maintain ITT
levels with doses as low as 500 IU every other day.56,57 Clinical data evaluating higher doses of hCG
given as monotherapy (500–2500 IU twice weekly), or low-dose hCG (500 IU every other day) in
combination with TRT, have demonstrated satisfactory results for maintaining spermatogenesis,57,58 and
either would be a good choice as recommended by these authors.

Alternatively, CC is commonly used as an alternative to TRT to treat hypogonadism in men wishing to
preserve spermatogenesis. The ability to take an oral medicine that is relatively inexpensive and has good
long-term safety data and is clinically efficacious at ameliorating hypogonadal symptoms is clearly
advantageous.69,71 However, data are currently not available specifically evaluating CC in this manner,
and randomized controlled trials are needed. The newer SERM on the horizon, EC, has been studied in the
phase II clinical trial setting specifically demonstrating preservation of spermatogenesis on semen analysis
while satisfactorily improving hypogonadal symptoms and serum testosterone levels, and phase III data is
pending.82,84 Finally, AIs such as anastrozole or letrozole may be helpful in this clinical scenario for
patients who are obese and/or exhibit a low T/E ratio <10:1.

A final scenario is a patient who presents for VR for which he is otherwise a good candidate, who has a
history of hypogonadism currently or previously treated with TRT. Such a scenario is difficult because the
current status of his spermatogenesis may be deduced only by careful history, testis volume on clinical
exam, and serum hormone testing of the HPG axis. Spermatogenesis cannot be definitively evaluated
without testis biopsy in the setting of a vasectomized patient. Likewise, the risk of proceeding with VR
under the assumption of normal spermatogenesis based upon physical exam poses an increased risk of
intraoperative difficulty evaluating vasal fluid for sperm and ultimately a higher risk of failure. Data on this
topic are limited, but a recent small, retrospective series was published of six men with median age of 39
using a preoperative testicular salvage regimen of CC 25 mg daily with or without hCG 3000 IU every
other day for 3 months after discontinuation of TRT. After testicular salvage therapy, the authors
demonstrated an 83% overall success rate with VR, which was 100% if at least one vasovasostomy was
performed.60 In that case series, if improvement in testicular volume on physical exam and increase in
gonadotropin levels was appreciated, VR was performed; however, testicular sperm aspiration was
performed in two of the six men to confirm spermatogenesis before VR due to insufficient testis volume
improvement and/or lack of improvement of the HPG axis on serum hormone testing. Such an approach
for the vasectomized patient before VR has otherwise not been previously described, nor has the use of
hCG and CC outside of another retrospective study,59 but the results appear promising. These authors
would consider treatment with CC 25 mg daily with hCG 3000 IU every other day for 3 months, with a
reassessment of the HPG axis and physical exam to ensure improvement before VR.

CONCLUSIONS

In the era of rising testosterone use and greater awareness of AAS use in younger men, clinicians need to
be aware of the detrimental effects of these agents on spermatogenesis. As the body of evidence grows in
support of restorative therapies for recovery of spermatogenesis in this patient population, it is important to
be familiar with the various treatment options, their effects on the HPG axis, and when to use them. A
historical perspective on gonadotropin use for HH is helpful to interpret the current use of gonadotropins
for restoration or maintenance of spermatogenesis. Likewise, understanding the clinical use and
effectiveness of CC and other SERMs helps lay the foundation for implementation of newer agents such as
EC. Despite off-label use of each restorative agent discussed herein, a definite lack of high quality data,
and the general understanding of male reproductive endocrinology still in its infancy, the field of male
infertility is rapidly advancing in this area as the importance of restoring and maintaining spermatogenesis
in men before, during, and after TRT is becoming fully realized.
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